Just above the mediumwave broadcast band, 160 meters is the lowest radio frequency band allocation available to radio amateurs operators in most countries. Seasoned operators often refer to 160 meters as Top Band, it is also sometimes referred to as the “Gentleman’s Band” in comparison to the often-freewheeling 20 and 80 meter band allocations.
The 160 meter band is the oldest amateur band and was the staple of reliable communication in the earliest days of amateur radio, when almost all communications were over relatively short distances.
As the high frequency bands were developed in mid 1920s, along with their smaller, more convenient antennas, 160 meters fell in to a period of relative disuse. Although there has always been activity on the band, fewer and fewer hams were willing to put up the sort of antennas necessary to take advantage of the band’s unique properties. For most amateurs, the HF bands were much easier to use and HF antennas need a lot less real estate.
After World War II, the 160 meter band was apparently not coming back. A large part of the U.S. 160 meter band was allocated on a primary basis to the LORAN radio-navigation system that began operating in and around the 160 meter band in 1942. Amateurs were relegated to secondary, non-interfering status; with severe regional power limitations, and restricted day/night operations on just a few narrow segments of the band.
Many older hams recall, with no great fondness, the ear-shattering buzz-saw racket of high power LORAN stations that began in 1942 until LORAN-A was phased out in North America in December 31, 1980 and most of the world by 1985. LORAN-A was still operating in China and Japan in 1995.
Great ingenuity was used to eliminate the pulse noise of the powerful LORAN -A transmitters through such famous circuitry as the “Select-O-Ject” of the late 1950s, the technology of which was adapted to modern noise blanking circuits used in current amateur receivers and transceivers.
Despite many obstacles and threats from commercial and military spectrum users, the efforts of a small number of determined 160 meter operators enabled the band to survive. The band experienced a rebirth with the demise of LORAN-A in the United States in December, 1980 and the removal of power restrictions below 1900 kHz soon thereafter. Power restrictions above 1900 kHz were removed in March 1984. 160 meters was then no longer regarded as the “orphan” band as it had been for more than half a century.
Technical Characteristics
Effective 160 meter operation can be particularly challenging, as full sized antennas (on the order of a quarter-wavelength or more), are difficult to erect for many amateurs with limited space. Nevertheless, many radio amateurs successfully communicate over very long distances with relatively small antennas. 160 meters is populated by many highly dedicated experimenters, as it is a proving ground for ingenuity in antenna design and operating technique.
Much about ionospheric propagation on 160 meters is still not completely understood. Phenomena such as “chordal hop” propagation are frequently observed, as well other unexplained long-distance propagation mechanisms. Inexplicable radio blackouts—such as are sometimes encountered on the AM broadcast band—also occur on 160 meters. Many of these phenomena have been investigated in the scientific community, while 160 meter operators continue to be in a unique position to further investigate such fascinating mysteries. The original “magic of radio” is very much alive and well on 160 meters. That’s why I love it, of course especially in CW.
2015 status: 51 cfmd dxcc until march on my 2 x 34 meter Doublet, up 17 meters.